翻訳と辞書
Words near each other
・ Morrell Park, Baltimore
・ Morrell Park, Philadelphia
・ Morrell Point
・ Morrell Potrero
・ Morrell Reef
・ Morrell Siding, New Brunswick
・ Morrells Brewing Company
・ Morrells Corner, New Jersey
・ Morrells of Oxford Ltd v Oxford United Football Club
・ Morrelville, Illinois
・ Morrenia
・ Morrenia odorata
・ Morrens
・ Morretes
・ Morrey
Morrey–Campanato space
・ Morrice
・ Morrice James, Baron St Brides
・ Morrice, Michigan
・ Morrich More
・ Morricone Youth
・ Morrie
・ Morrie (musician)
・ Morrie Aderholt
・ Morrie Arnovich
・ Morrie Boyle
・ Morrie Brickman
・ Morrie Church
・ Morrie Critchley
・ Morrie Elis


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Morrey–Campanato space : ウィキペディア英語版
Morrey–Campanato space
In mathematics, the Morrey–Campanato spaces (named after Charles B. Morrey, Jr. and Sergio Campanato) L^(\Omega) are Banach spaces which extend the notion of functions of bounded mean oscillation, describing situations where the oscillation of the function in a ball is proportional to some power of the radius other than the dimension. They are used in the theory of elliptic partial differential equations, since for certain values of \lambda, elements of the space L^(\Omega) are Hölder continuous functions over the domain \Omega.
The seminorm of the Morrey spaces is given by
:\left()_^p = \sup_ \frac \int_ | u(y) |^p dy.
When \lambda = 0, the Morrey space is the same as the usual L^p space. When \lambda = n, the spatial dimension, the Morrey space is equivalent to L^\infty, due to the Lebesgue differentiation theorem. When \lambda > n, the space contains only the 0 function.
The seminorm of the Campanato space is given by
:\left()_^p = \sup_ \frac \int_ | u(y) - u_ |^p dy
where
:u_ = \frac \int_ u(y) dy.
It is known that the Morrey spaces with 0 \leq \lambda < n are equivalent to the Campanato spaces with the same value of \lambda when \Omega is a sufficiently regular domain, that is to say, when there is a constant ''A'' such that |\Omega \cap B_r(x_0)| > A r^n for every x_0 \in \Omega and r < \operatorname(\Omega).
When n=\lambda, the Campanato space is the space of functions of bounded mean oscillation. When n < \lambda \leq n+p, the Campanato space is the space of Hölder continuous functions C^\alpha(\Omega) with \alpha = \frac. For \lambda > n+p, the space contains only constant functions.
==References==

*
*


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Morrey–Campanato space」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.